

Certificate of compliance

Applicant: SMA Solar Technology AG

Sonnenallee 1 34266 Niestetal **Germany**

Product: Photovoltaic (PV) inverter

Model: SB3.0-1AV-41

SB3.6-1AV-41 SB4.0-1AV-41 SB5.0-1AV-41 SB6.0-1AV-41

Use in accordance with regulations:

Automatic disconnection device with single-phase mains surveillance in accordance with Engineering Recommendation G99/1 for photovoltaic systems with a single-phase parallel coupling via an inverter in the public mains supply. The automatic disconnection device is an integral part of the aforementioned inverter. This serves as a replacement for the disconnection device with isolating function, which can be accessed the distribution network provider at any time.

Applied rules and standards:

Engineering Recommendation G99/1-6:2020

Requirements for the connection of generation equipment in parallel with public distribution networks

DIN V VDE V 0126-1-1:2006-02 (4.1 Functional safety)

Automatic disconnection device between a generator and the public low-voltage grid

At the time of issue of this certificate the safety concept of an aforementioned representative product corresponds to the valid safety specifications for the specified use in accordance with regulations.

Report number: 16TH0348-G99/1-6_0 Certification program: NSOP-0032-DEU-ZE-V01

Certificate number: U20-0839 Date of issue: 2020-10-26

Certification body

Thomas Lammel

Certification body Bureau Veritas Consumer Products Services Germany GmbH accredited according to DIN EN ISO/IEC 17065
A partial representation of the certificate requires the written approval of Bureau Veritas Consumer Products Services Germany

GmbH

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 16TH0348-G99/1-6 0

Type Approval and declaration	on of compliance w	ith the requir	emen	ts of Engineering R	Recom	mendation G	i99.			
PGM Technology:	Photovoltaic Invert	Photovoltaic Inverter								
Manufacturer / applicant:	SMA Solar Techno	SMA Solar Technology AG								
Address:	Sonnenallee 1, 342	266 Niestetal,	Germ	any						
Tel	+49 5619522-0		Fax:			+49 561952	2-100			
Email:	info@SMA.de		Webs	site:		www.SMA.d	e			
Rated values	SB3.0-1AV-41	SB3.0-1AV-41 SB3.6-1AV-41 SB4.0-1AV-41 SB5.0-1AV-41 SB6.0-1AV-								
MPP DC voltage range [V]	110 - 500	110 - 500								
Input DC voltage range [V]				max. 600						
Input DC current [A]				2 x 15						
Output AC voltage [V]			22	0 / 230 / 240; 50/60	Hz					
Output AC current [A]	13	16		18		22	26,1			
Output power [VA]	3000	3680		4000		5000	6000			
	•									
Firmware version	V03.00.04.R or hig	her								
Measurement period:	2019-08-24 to 201	9-09-03; 2020)-10-22	2 to 2020-10-23						

Description of the structure of the power generation unit:

The power generation unit is equipped with a PV and line-side EMC filter. The power generation unit has no galvanic isolation between DC input and AC output. Output switch-off is performed with single-fault tolerance based on two series-connected relays in line and neutral. This enables a safe disconnection of the power generation unit from the network in case of error.

Differences between Generating Units:

The models SB3.0-1AV-41, SB3.6-1AV-41, SB4.0-1AV-41, SB5.0-1AV-41 and SB6.0-1AV-41 are completely identical and output power derated by software.

The above stated Generating Units are tested according the requirements in the Engineering Recommendation G99/1. Any modification that affects the stated tests must be named by the manufacturer/supplier of the product to ensure that the product meets all requirements of the Engineering Recommendation G99/1.

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 16TH0348-G99/1-6_0

Operating Range.	
Test 1	Voltage = 85% of nominal (195,5V) Frequency = 47Hz Power Factor = 1 Period of test 20 s
Connection:	Always connected
Limit:	Always connected
Test 2	Voltage = 85% of nominal (195,5V) Frequency = 47,5Hz Power Factor = 1 Period of test 90 minutes
Connection:	Always connected
Limit:	Always connected
Test 3	Voltage = 110% of nominal (253V) Frequency = 51,5Hz Power Factor = 1 Period of test 90 minutes
Connection:	
Limit:	Always connected
Test 4	Voltage = 110% of nominal (253V) Frequency = 52,0Hz Power Factor = 1 Period of test 15 minutes
Connection:	Always connected
Limit:	Always connected
Test 5	Confirm that the Power Generating Module is capable of staying connected to the Distribution Network and operate at rates of change of frequency up to 1 Hzs ⁻¹ as measured over a period of 500ms. Note that this is not expected to be demonstrated on site.
Connection:	Always connected
Limit:	Always connected

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 16TH0348-G99/1-6 0

Protection. Voltage	tests.									
Phase 1										
Function	Set	ting	Trip	test	No trip	test				
	VoltageTime delayVoltageTime delay[V][s][V][s]		Voltage / time	Confirm no trip						
U/V	184	2,5	184,6	2,54	188V / 5,0s	No trip				
					180V / 2,45s	No trip				
O/V stage 1	262,2	1,0	264,1	1,03	258,2V 5,0s	No trip				
O/V stage 2	273,7	0,5	275,5	0,53	269,7V 0,95s	No trip				
					277,7V 0,45s	No trip				

Note. For Voltage tests the Voltage required to trip is the setting $\pm 3,45$ V. The time delay can be measured at a larger deviation than the minimum required to operate the protection. The No trip tests need to be carried out at the setting ± 4 V and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Frequency tests.									
Function	Set	ting	Trip	test	No trip test				
	Frequency [Hz]	Time delay [s]	Frequency [Hz]	Time delay [s]	Frequency / time	Confirm no trip			
U/F stage 1	47,5	20	47,50	20,10	47,7Hz / 30s	No trip			
U/F stage 2	47	0,5	47,00	0,6	47,2Hz / 19,5s	No trip			
					46,8Hz / 0,45s	No trip			
O/F stage 2	52	0,5	52,05	0,58	51,8Hz / 120s	No trip			
					52,2Hz / 0,45s	No trip			

Note. For Frequency Trip tests the Frequency required to trip is the setting ± 0.1 Hz. In order to measure the time delay a larger deviation than the minimum required to operate the projection can be used. The "No-trip tests" need to be carried out at the setting ± 0.2 Hz and for the relevant times as shown in the table above to ensure that the protection will not trip in error.

Protection. Re-connection timer.

Time delay setting

Annex to the G99/1 certificate of compliance No. U20-0839

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 16TH0348-G99/1-6_0

Protection. Loss of Mains.										
Inverters tested accor	Inverters tested according to BS EN 62116.									
Balancing load on islanded network	33% of -5% Q Test 22	66% of -5% Q Test 12	100% of -5% P Test 5	33% of +5% Q Test 31	66% of +5% Q Test 21	100% of +5% P Test 10				
Trip time. Ph1 fuse removed [s]	0,371	0,369	0,388	0,388	0,388	0,386				
Note. Trip time limit is	0,5s.									

Test should prove that the reconnection sequence starts in no less than 20 seconds for restoration of voltage and frequency to within the stage 1 settings of table 10.1. Over Voltage Time delay setting Measured delay 20s 37,1

Under Voltage

Time delay setting	Measured delay
20s	36,7

Over Frequency

Measured delay

20s	35,9					
Under Frequency						
Time delay setting	Measured delay					
20s	28,5					

	Checks on no reconnection when voltage or frequency is brought to just outside stage 1 limits of table 1.						
	At 266,2V	At 180,0V	At 47,4Hz	At 52,1Hz			
Confirmation that the Generating Unit does not reconnect.	No reconnection	No reconnection	No reconnection	No reconnection			

Protection. Frequency change, Stability test.									
	Start Frequency [Hz]	Change	Test Duration	Confirm no trip					
Positive Vector Shift	49,5	+50 degrees		No trip					
Negative Vector Shift	50,5	-50 degrees		No trip					
Positive Frequency drift	49,0 to 51,0	+0,95Hz/sec	2,1s	No trip					
Negative Frequency drift	51,0 to 49,0	-0,95Hz/sec	2,1s	No trip					

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 16TH0348-G99/1-6_0

Limited Frequency Sensitive Mo	ode – Over Fr	equency					
1-min mean value [Hz]:	a) 50,00	b) 50,45	c) 50,70	d) 51,15	e) 50,70	f) 50,45	g) 50,00
1. Measurement a) to g): Active	power outpu	t > 80% Pn					
Frequency [Hz]:	50,00	50,45	50,70	51,15	50,70	50,45	50,00
P _{expected} [W]:	N/A	5866,2	5566,7	5028,0	5566,7	5866,2	5961,2
P _{measured} [W]:	5957,9	5908,3	5613,5	5066,8	5616,2	5912,6	5961,2
T _{set} [s]:	N/A	N/A	0,0	0,0	0,0	0,0	0,0
2. Measurement a) to g): Active	power outpu	t 40% and 60	% Pn				
Frequency [Hz]:	50,00	50,45	50,70	51,15	50,70	50,45	50,00
Pexpected [W]:	N/A	2925,7	2626,1	2087,5	2626,1	2930,6	2983,3
P _{measured} [W]:	2977,9	2925,8	2625,1	2083,8	2629,5	2930,6	2983,3
T _{set} [s]:	N/A	N/A	0,0	0,0	0,0	0,0	0,0

Output Power with falling Frequency						
Frequency setpoint [Hz]:	50,00	49,50	49,00	48,00	47,60	47,10
Frequency [Hz]:	50,00	49,50	49,00	48,00	47,60	47,10
Active power [W]:	5963	5963	5963	5963	5963	5963
ΔP/Pmax [%]:		0,01	0,01	0,01	0,01	0,01

Note.

For a CHP the test point a) at 50,00Hz is taken as Registered capacity (Pmax) due to limited discrete operating points of the CHP's thermal process.

Electronic inverter no power reduction take place.

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 16TH0348-G99/1-6_0

Phase 1										
Genera	ting Unit rating per p	hase (rpp)								
	At 45-55% of	rated output	100% of ra	ited output						
	2,97	7kW	5,95	5kW						
Harmonic	Measured Value (MV) in [A]			Measured Value (MV) in [%]	Limit in BS EN61000-3-12 in %					
					1 phase	3 phase				
2nd	0,021	0,08	0,045	0,17	8%	8%				
3rd	0,265	1,02	0,585	2,24	21,6%	N/A				
4th	0,007	0,03	0,006	0,02	4%	4%				
5th	0,234	0,90	0,370	1,42	10,7%	10,7%				
6th	0,005	0,02	0,005	0,02	2,67%	2,67%				
7th	0,114	0,44	0,168	0,64	7,2%	7,2%				
8th	0,004	0,02	0,006	0,02	2%	2%				
9th	0,070	0,27	0,099	0,38	3,8%	N/A				
10th	0,004	0,02	0,005	0,02	1,6%	1,6%				
11th	0,044	0,17	0,066	0,25	3,1%	3,1%				
12th	0,003	0,01	0,004	0,02	1,33%	1,33%				
13th	0,036	0,14	0,056	0,21	2%	2%				
14th	0,003	0,01	0,003	0,01	N/A	N/A				
15th	0,005	0,10	0,044	0,17	N/A	N/A				
16th	0,023	0,01	0,004	0,01	N/A	N/A				
17th	0,002	0,08	0,039	0,15	N/A	N/A				
18th	0,022	0,01	0,003	0,13	N/A	N/A				
19th	0,003	0,06	0,003	0,01	N/A	N/A				
20th	0,015	0,00	· · · · · · · · · · · · · · · · · · ·	0,01	N/A	N/A				
20th	'	0,06	0,003	,	N/A	N/A				
21th	0,014	,	0,026	0,10 0,01	N/A	N/A N/A				
	0,002	0,01	0,002	,						
23th	0,009	0,04	0,022	0,08	N/A	N/A				
24th	0,002	0,01	0,003	0,01	N/A	N/A				
25th	0,008	0,03	0,021	0,08	N/A	N/A				
26th	0,002	0,01	0,002	0,01	N/A	N/A				
27th	0,005	0,02	0,017	0,06	N/A	N/A				
28th	0,002	0,01	0,002	0,01	N/A	N/A				
29th	0,006	0,02	0,016	0,06	N/A	N/A				
30th	0,002	0,01	0,002	0,01	N/A	N/A				
31th	0,005	0,02	0,015	0,06	N/A	N/A				
32th	0,001	0,01	0,002	0,01	N/A	N/A				
33th	0,005	0,02	0,014	0,05	N/A	N/A				
34th	0,001	0,01	0,002	0,01	N/A	N/A				
35th	0,005	0,02	0,014	0,05	N/A	N/A				
36th	0,001	0,01	0,002	0,01	N/A	N/A				
37th	0,005	0,02	0,013	0,05	N/A	N/A				
38th	0,001	0,01	0,002	0,01	N/A	N/A				
39th	0,006	0,02	0,012	0,05	N/A	N/A				
40th	0,002	0,01	0,002	0,01	N/A	N/A				
THD40 [%]	2.8	325	2,9	990	23%	13%				

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 16TH0348-G99/1-6_0

Power Quality. Power factor.								
Output power	216,2V	230V	253V	Measured at three voltage levels and at full				
100%	1,00	1,00	1,00	output. Voltage to be maintained within ±1,5% of the stated level during the test.				
Limit	>0,95	>0,95	>0,95					

Power Quality. Voltage fluctuation and Flicker.										
	Starting			Stopping				Running		
	dmax	d	lc	d(t)	dmax	C	lc	d(t)	Pst	Plt 2 hours
Measured values at test impedance	3,7	3,7		1337ms	4,1	3	3,9	1010ms	0,37	0,35
Measured values at standard impedance	5,9	5,8		0ms	6,6	6	5,3	0ms	0,59	0,56
Values for maximum impedance	3,1	3	,1	0ms	3,5	3	,3	0,0	0,31	0,29
Limits set under BS EN 61000-3-11	4%	3,3	3%	3,3% 500ms	4%	3,	3%	3,3% 500ms	1,0	0,65
Test impedance	R			0,25	Ω			XI	0,25	Ω
	Z			0,354	Ω					
Standard impedance	R		0,4		Ω			XI	0,25	Ω
	Z			0,472	Ω					
Maximum impedance	R		0,21		Ω			XI	0,13	Ω
	Zmax		0,247		Ω					

Power Quality. DC injection.						
Test level power [%]	10	55	100			
Recorded value [mA]	2,9	2,7	2,6			
Recorded value [%]	0,01	0,01	0,01			
Limit [%]	0,25	0,25	0,25			
Note. DC-injection is tested at each phase of the inverter and a limit of 0,25% per phase was used as pass criteria.						

Appendix A2-3 Compliance Verification Report for Inverter Connected Power Generating Modules

Extract from test report according to the Engineering Recommendation G99

Nr. 16TH0348-G99/1-6 0

Fault level Contribution.					
For a directly coup	For a Inverter SSEG				
Parameter	Symbol	Value	Time after fault	Volts [V]	Amps [A]
Peak Short Circuit current	Ιp	N/A	20ms	229,99	30,93
Initial Value of aperiodic current	А	N/A	100ms	27,16	26,79
Initial symmetrical short-circuit current*	l _k	N/A	250ms	25,05	26,02
Decaying (aperiodic) component of short circuit current*	i _{DC}	N/A	500ms	26,16	27,20
Reactance/Resistance Ratio of source*	X/R	N/A	Time to Trip [s]	2,53	

For rotating machines and linear piston machines the test should produce a 0s – 2s plot of the short circuit current as seen at the Generating Unit terminals.

^{*} Values for these parameters should be provided where the short circuit duration is sufficiently long to enable interpolation of the plot.

Self Monitoring – Solid state switching.	N/A
It has been verified that in the event of the solid state switching device failing to disconnect the Power Park Module, the voltage on the output side of the switching device is reduced to a value below 50 volts within 0,5 seconds.	N/A

Note. Unit do not provide solid state switching relays. In case the semiconductor bridge is switched off, then the voltage on the output drops to 0. In this case the relays on the output will also open (Functional safety of the internal automatic disconnection device according to VDE 0126-1-1).

Logic Interface (input port)				
Confirm that an input port is provided and can be used to shut down the module.	Yes			
Note:				
A Modbus signal can be used to cease active power output within 5s				